Skip to main content

Section 4.1 Definition of exp(A)

Definition 4.1.1.

For any n×n matrix A, the matrix exp(A) or eA is called the matrix exponential of A and is calculated by

exp(A)=In+k=1Akk!.

Note that the sum above always converges.

We'll be interested in 2×2 matrices A and the exponential of the form exp(tA).

We have that

\begin{align*} \exp(tA) \amp = I_n + \sum_{k=1}^\infty \frac{A^kt^k}{k!},\\ \amp = I_n + \sum_{k=1}^\infty \frac{V D^k V^{-1} t^k}{k!}, \\ \amp = V \biggl( I_n + \sum_{k=1}^\infty \frac{D^k t^k}{k!} \biggr) V^{-1}, \\ \amp = V e^{tD} V^{-1}. \end{align*}

For the second part, note that if \(D = \bmat a00b\text{,}\) then

\begin{gather*} D^k = \bmat{a^k}00{b^k}, \end{gather*}

so,

\begin{align*} e^{tD} \amp = I_n + \sum_{k=1}^\infty \frac{D^k t^k}{k!} = \sum_{k=0}^\infty \frac{t^k}{k!} \bmat{a^k}00{b^k} = \bmat{e^{at}}00{e^{bt}}. \end{align*}

We don't need A to be diagonalizable in order for exp(tA) to exist. When A is not diagonalizable, try to find a general form of Ak.

Note that

\begin{align*} A^2 \amp = \bmat0100^2 = \bmat0000, \end{align*}

so \(A^k = \bmat0000\) for all \(k \geq 2\text{.}\) In calculating \(\exp(tA)\text{,}\) we get that

\begin{align*} \exp(tA) \amp = I_2 + \sum_{k=1}^\infty \frac{A^kt^k}{n!} = \bmat1001 + t\bmat0100 = \bmat1t01. \end{align*}

A very intriguing property of etA is that

ddtetA=AetA.

Take a look at the series representation of \(e^{tA}\) and differentiate it with respect to \(t\text{:}\)

\begin{align*} \frac d{dt} e^{tA} \amp = \sum_{k=1}^\infty \frac{k A^k t^{k-1}}{k!} = A \biggl( I_n + \sum_{k=1}^\infty \frac{A^k t^k}{k!} \biggr) = Ae^{tA}. \end{align*}

So, x(t)=etAx0 is the general solution of x=Ax with x(0)=x0.